Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Sodium 2,4-dinitrophenolate monohydrate

Nina von Prondzinski,^a Manuela Winter^b and Klaus Merz^a*

^aAnorganische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, D-41801 Bochum, Germany, and ^bAnorganische Chemie II, Ruhr-Universität Bochum, Universitätsstrasse 150, D-41801 Bochum, Germany Correspondence e-mail: Klaus.Merz@rub.de

Received 30 April 2007; accepted 12 May 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.040; data-to-parameter ratio = 6.7.

The title compound, $Na^+ \cdot C_6 H_3 N_2 O_5^- \cdot H_2 O$, was obtained by the reaction of sodium hydroxide with 2,4-dinitrophenol in water. The crystal packing shows a laminated structure with intercalated coordinated 2,4-dinitrophenolate spacers, where Na⁺ cations and water molecules lie on twofold rotation axes. The laminated structure consists of NaO₆ chains linked by 2,4dinitrophenolate ligands. Each Na⁺ cation exhibits a distorted octahedral geometry. One cation is surrounded by four water molecules and two O atoms from two 4-nitro groups. The other is surrounded by two O atoms from two 2-nitro groups and four phenolate O atoms.

Related literature

For general background, see: Prondzinski et al. (2007); Zaderenko et al. (1997). For a related structure, see: In et al. (1997).

Experimental

Crystal data Na⁺·C₆H₃NO₅⁻·H₂O $M_r = 224.11$

Monoclinic, C2 a = 19.962 (3) Å b = 11.4615 (17) Å c = 3.5291 (5) Å $\beta = 95.136 \ (12)^{\circ}$ V = 804.2 (2) Å³ Z = 4

Data collection

Bruker SMART IK CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.959, T_{\max} = 0.979$

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.032 \\ wR(F^2) = 0.040 \end{array}$ S = 0.90971 reflections 145 parameters 1 restraint

 $\mu = 0.21 \text{ mm}^{-1}$ T = 203 (2) K $0.20 \times 0.10 \times 0.10$ mm

Mo $K\alpha$ radiation

5696 measured reflections 971 independent reflections 716 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.066$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.19$ e Å⁻³ $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} O8-H2\cdots O3^i\\ O7-H1\cdots O5^{ii} \end{matrix}$	0.80 (3) 0.92 (3)	2.25 (3) 2.07 (3)	3.035 (3) 2.925 (3)	171 (3) 154 (3)
Symmetry codes: (i)	$x - \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}$	1; (ii) $-x - \frac{1}{2}, y$	$-\frac{1}{2}, -z.$	

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL and local programs.

We are grateful to the Deutsche Forschungsgemeinschaft (SFB 558 Metall-Substratwechselwirkungen in der heterogenen Katalyse) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2061).

References

- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369
- Prondzinski, N. von, Babai, A., Mudring, A. V. & Merz, K. (2007). Z. Anorg. Allg. Chem. In the press. (DOI: 10.1002/zaac.200700169)
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.

supplementary materials

Acta Cryst. (2007). E63, m1687 [doi:10.1107/S1600536807023409]

Sodium 2,4-dinitrophenolate monohydrate

N. von Prondzinski, M. Winter and K. Merz

Comment

2,4-Dinitrophenolate is a versatile ligand for crystal engineering, which is able to coordinate with phenoxy or nitro groups to metal centers, yielding different metal complexes (Prondzinski *et al.*, 2007; Zaderenko *et al.*, 1997). It is known that nitrophenols not only form various π -stacking complexes with other aromatic molecules but also form salts through specific electrostatic or hydrogen-bonding interactions (In *et al.*, 1997). The bonding of electron-donor-acceptor complexes depends strongly on the substitution pattern of nitro and hydroxy groups on the benzene ring.

The asymmetric unit of (I) is shown in Fig. 1, where Na atoms and water molecules each lies on a twofold rotation axis. The crystal packing of (I) shows a laminated structure with intercalated coordinated 2,4-dinitrophenolate spacer (Fig. 2). The laminated structure consists of NaO₆ chains linked by 2,4-dinitrophenolate ligands. Each Na atom exhibits a distorted octahedral geometry. The Na1 atom is surrounded by four water molecules and two O atoms from two *para*-nitro groups. The Na2 atom is surrounded by two O atoms from two *ortho*-nitro groups and four phenolate O atoms.

Experimental

Compound (I) was obtained as the product of the reaction of sodium hydroxide (0.20 g, 5 mmol) with 2,4-dinitrophenol (0.70 g, 3.8 mmol) in water (10 ml) (yield 0.66 g).

Refinement

H atoms on water molecules were located in a difference map and refined isotropically. The other H atoms were positioned geometrically and refined as riding, with C—H = 0.94 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of (I). Dashed lines denote hydrogen bonds.

Sodium 2,4-dinitrophenolate Monohydrate

$Na^{+}.C_{6}H_{3}NO_{5}^{-}.H_{2}O$	$F_{000} = 456$
$M_r = 224.11$	$D_{\rm x} = 1.851 \ {\rm Mg \ m^{-3}}$
Monoclinic, C2	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 3132 reflections
a = 19.962 (3) Å	$\theta = 3.2 - 27.0^{\circ}$
<i>b</i> = 11.4615 (17) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 3.5291 (5) Å	T = 203 (2) K
$\beta = 95.136 \ (12)^{\circ}$	Needle, yellow
V = 804.2 (2) Å ³	$0.20\times0.10\times0.10~mm$
Z = 4	

Data collection

Bruker SMART 1K CCD area-detector diffractometer	971 independent reflections
Radiation source: fine-focus sealed tube	716 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.066$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 203(2) K	$\theta_{\min} = 3.6^{\circ}$
φ and ω scan	$h = -25 \rightarrow 25$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.959, T_{\max} = 0.979$	$l = -4 \rightarrow 4$
5696 measured reflections	

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.032$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0097P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.040$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.90	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
971 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
145 parameters	Extinction correction: none
1 restraint	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

					-	
Fractional atomic coordinates an	d isotronic or e	auivalent isotropic d	isnlacement	narameters	$(Å^2)$)
i i dettollat diollite eool dillates di		guiralent ison opie a	spiceenieni	parameters	()	1

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Na1	-0.5000	-0.10008 (15)	0.0000	0.0181 (4)
Na2	0.0000	-0.00873 (14)	0.0000	0.0166 (5)
O5	-0.07595 (10)	0.03588 (16)	0.4527 (6)	0.0149 (5)
N1	-0.34206 (13)	-0.1025 (2)	0.1758 (7)	0.0173 (7)
01	-0.06035 (10)	-0.18077 (16)	0.7752 (6)	0.0187 (6)
O4	-0.38225 (10)	-0.03559 (17)	-0.0055 (6)	0.0200 (6)
O3	-0.12530 (9)	-0.3073 (2)	0.4714 (5)	0.0207 (5)
N2	-0.11202 (13)	-0.2052 (2)	0.5748 (7)	0.0152 (6)
O2	-0.35961 (10)	-0.19710 (18)	0.3024 (6)	0.0210 (6)
C1	-0.25320 (16)	0.0447 (3)	0.1392 (8)	0.0139 (8)
H1A	-0.2852	0.0976	0.0281	0.017*
C2	-0.13592 (15)	0.0009 (3)	0.3809 (8)	0.0120 (7)
C3	-0.18714 (15)	0.0772 (3)	0.2110 (9)	0.0132 (7)
H3A	-0.1748	0.1533	0.1457	0.016*
C4	-0.22575 (15)	-0.1487 (3)	0.3777 (8)	0.0122 (8)
H4A	-0.2387	-0.2256	0.4282	0.015*
C5	-0.15992 (15)	-0.1149 (3)	0.4466 (8)	0.0123 (7)
C6	-0.27234 (15)	-0.0690 (3)	0.2343 (9)	0.0117 (7)
O7	-0.5000	-0.2456 (3)	-0.5000	0.0178 (8)
O8	-0.5000	0.0418 (3)	-0.5000	0.0181 (8)
H2	-0.5300 (14)	0.088 (3)	-0.511 (10)	0.022 (10)*
H1	-0.4654 (15)	-0.298 (3)	-0.498 (9)	0.051 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0162 (11)	0.0180 (10)	0.0203 (11)	0.000	0.0020 (8)	0.000
Na2	0.0116 (10)	0.0212 (11)	0.0167 (11)	0.000	0.0002 (8)	0.000
05	0.0122 (13)	0.0141 (12)	0.0178 (13)	-0.0009 (10)	-0.0013 (10)	-0.0014 (10)
N1	0.0212 (18)	0.0185 (16)	0.0129 (16)	0.0039 (15)	0.0055 (13)	-0.0065 (14)
01	0.0119 (13)	0.0183 (14)	0.0236 (13)	-0.0022 (11)	-0.0113 (11)	-0.0010 (10)
O4	0.0094 (13)	0.0237 (14)	0.0258 (15)	0.0054 (10)	-0.0052 (11)	0.0030 (11)
O3	0.0187 (12)	0.0143 (12)	0.0288 (14)	0.0007 (12)	-0.0004 (10)	-0.0036 (13)
N2	0.0171 (17)	0.0168 (16)	0.0128 (15)	0.0001 (13)	0.0073 (13)	-0.0014 (13)
O2	0.0166 (13)	0.0165 (14)	0.0298 (14)	-0.0059 (11)	0.0012 (11)	0.0006 (11)

supplementary materials

C1 C2 C3 C4 C5 C6 O7 O8	0.0128 (19) 0.0126 (19) 0.0162 (19) 0.0145 (19) 0.0108 (18) 0.0077 (19) 0.016 (2) 0.012 (2)	0.0193 (19) 0.0153 (18) 0.0113 (18) 0.0124 (17) 0.0160 (18) 0.017 (2) 0.0138 (19) 0.013 (2)	0.010 (2) 0.0087 (18) 0.0127 (18) 0.0098 (18) 0.0096 (18) 0.0101 (17) 0.024 (2) 0.029 (2)	$\begin{array}{c} 0.0038 \ (15) \\ 0.0033 \ (16) \\ -0.0015 \ (15) \\ 0.0024 \ (14) \\ 0.0045 \ (16) \\ -0.0032 \ (13) \\ 0.000 \\ 0.000 \end{array}$	0.0013 (15) 0.0046 (15) 0.0054 (15) 0.0013 (14) -0.0012 (13) -0.0011 (13) 0.0046 (17) -0.0019 (18)	0.0007 (15) -0.0018 (14) 0.0026 (14) -0.0006 (13) 0.0002 (15) -0.0018 (14) 0.000 0.000
Geometric paran	neters (Å, °)					
Nal O ^{gi}		2 400 (3)	N1—	-04	1 245	(3)
Na1-08		2.400 (3)	N1—	-C6	1.243	(4)
Nal—07		2.428 (2)	01—	-N2	1.230	(3)
Na1—O7 ⁱ		2.428 (2)	03—	-N2	1.247	(3)
Na1—O4		2.466 (2)	N2—	-C5	1.454	(4)
Na1—O4 ⁱⁱ		2.466 (2)	C1—	-C3	1.372	(4)
Na1—Na1 ⁱ		3.5291 (5)	C1—	-C6	1.407	(4)
Na2—O5 ⁱⁱⁱ		2.355 (2)	C1—	-H1A	0.940	0
Na2—O5		2.355 (2)	C2—	-C5	1.436	(4)
Na2—O5 ^{iv}		2.401 (2)	C2—	-C3	1.435	(4)
Na2—O5 ^v		2.401 (2)	С3—	-H3A	0.940	0
Na2—O1 ^v		2.408 (2)	C4—	-C5	1.371	(4)
Na2—O1 ^{iv}		2.408 (2)	C4—	-C6	1.368	(4)
Na2—Na2 ⁱ		3.5291 (5)	C4—	-H4A	0.940	0
O5—C2		1.267 (3)	07—	-H1	0.92 ((3)
N1—O2		1.235 (3)	08—	-H2	0.80 ((3)
O8 ⁱ —Na1—O8		94.67 (14)	O5 ^v -	–Na2—Na2 ⁱ	138.4	0 (5)
O8 ⁱ —Na1—O7		179.28 (11)	O1 ^v -	–Na2—Na2 ⁱ	106.5	4 (5)
O8—Na1—O7		86.05 (7)	O1 ^{iv} -	—Na2—Na2 ⁱ	73.46	(5)
O8 ⁱ —Na1—O7 ⁱ		86.05 (7)	O5 ⁱⁱⁱ -	—Na2—Na2 ^v	42.60	(5)
08—Na1—O7 ⁱ		179.28 (11)	05—	-Na2—Na2 ^v	137.4	0 (5)
07—Na1—07 ⁱ		93.23 (12)	O5 ^{iv} -	—Na2—Na2 ^v	138.4	0 (5)
O8 ⁱ —Na1—O4		82.26 (6)	O5 ^v -	–Na2—Na2 ^v	41.60	(5)
O8—Na1—O4		74.23 (6)	O1 ^v -	–Na2—Na2 ^v	73.46	(5)
O7—Na1—O4		97.94 (5)	O1 ^{iv} -	—Na2—Na2 ^v	106.5	4 (5)
O7 ⁱ —Na1—O4		105.88 (5)	Na2 ⁱ -	—Na2—Na2 ^v	180.0	0 (5)
O8 ⁱ —Na1—O4 ⁱⁱ		74.23 (6)	C2—	-O5—Na2	116.7	3 (18)
08—Na1—O4 ⁱⁱ		82.26 (6)	C2—	-O5—Na2 ⁱ	127.6	6 (19)
07—Na1—O4 ⁱⁱ		105.88 (5)	Na2–	O5Na2 ⁱ	95.80	(7)
$O7^{i}$ —Na1— $O4^{ii}$		97.94 (5)	02—	-N1—O4	122.4	(3)
04 —Na1— 04^{ii}		145.11 (12)	02—	-N1—C6	118.9	(3)
O8 ⁱ —Na1—Na1 ⁱ		42.67 (7)	04—	-N1—C6	118.6	(3)

O8—Na1—Na1 ⁱ	137.33 (7)	N2—O1—Na2 ⁱ	138.17 (18)
O7—Na1—Na1 ⁱ	136.61 (6)	N1—O4—Na1	112.46 (18)
O7 ⁱ —Na1—Na1 ⁱ	43.39 (6)	O1—N2—O3	121.8 (2)
O4—Na1—Na1 ⁱ	95.35 (5)	O1—N2—C5	120.8 (3)
O4 ⁱⁱ —Na1—Na1 ⁱ	84.65 (5)	O3—N2—C5	117.4 (2)
O8 ⁱ —Na1—Na1 ^v	137.33 (7)	C3—C1—C6	119.0 (3)
O8—Na1—Na1 ^v	42.67 (7)	C3—C1—H1A	120.5
O7—Na1—Na1 ^v	43.39 (6)	C6—C1—H1A	120.5
O7 ⁱ —Na1—Na1 ^v	136.61 (6)	O5—C2—C5	125.7 (3)
O4—Na1—Na1 ^v	84.65 (5)	O5—C2—C3	121.0 (3)
O4 ⁱⁱ —Na1—Na1 ^v	95.35 (5)	C5—C2—C3	113.3 (3)
Na1 ⁱ —Na1—Na1 ^v	180.00 (6)	C1—C3—C2	123.3 (3)
O5 ⁱⁱⁱ —Na2—O5	154.92 (12)	C1—C3—H3A	118.4
O5 ⁱⁱⁱ —Na2—O5 ^{iv}	95.80 (7)	С2—С3—Н3А	118.4
O5—Na2—O5 ^{iv}	78.85 (8)	C5—C4—C6	119.1 (3)
O5 ⁱⁱⁱ —Na2—O5 ^v	78.85 (8)	C5—C4—H4A	120.4
O5—Na2—O5 ^v	95.80 (7)	C6—C4—H4A	120.4
O5 ^{iv} —Na2—O5 ^v	155.41 (11)	C4—C5—C2	124.1 (3)
O5 ⁱⁱⁱ —Na2—O1 ^v	106.72 (7)	C4—C5—N2	116.6 (3)
O5—Na2—O1 ^v	93.89 (8)	C2C5N2	119.2 (3)
O5 ^{iv} —Na2—O1 ^v	134.48 (8)	C4—C6—C1	121.1 (3)
O5 ^v —Na2—O1 ^v	69.40 (7)	C4—C6—N1	119.4 (3)
O5 ⁱⁱⁱ —Na2—O1 ^{iv}	93.89 (8)	C1—C6—N1	119.5 (3)
O5—Na2—O1 ^{iv}	106.72 (7)	Na1—O7—Na1 ^v	93.23 (12)
O5 ^{iv} —Na2—O1 ^{iv}	69.40 (7)	Na1—O7—H1	120 (2)
O5 ^v —Na2—O1 ^{iv}	134.48 (8)	Na1 ^v —O7—H1	114 (2)
O1 ^v —Na2—O1 ^{iv}	70.04 (10)	Na1 ^v —O8—Na1	94.67 (14)
O5 ⁱⁱⁱ —Na2—Na2 ⁱ	137.40 (5)	Na1 ^v —O8—H2	118 (2)
O5—Na2—Na2 ⁱ	42.60 (5)	Na1—O8—H2	116 (2)
O5 ^{iv} —Na2—Na2 ⁱ	41.60 (5)		

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*–1, *y*, –*z*; (iii) –*x*, *y*, –*z*; (iv) –*x*, *y*, –*z*+1; (v) *x*, *y*, *z*–1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O8—H2···O3 ^{vi}	0.80 (3)	2.25 (3)	3.035 (3)	171 (3)
O7—H1···O5 ^{vii}	0.92 (3)	2.07 (3)	2.925 (3)	154 (3)
Symmetry codes: (vi) $x-1/2$, $y+1/2$, $z-1$; (vii) $-x-1/2$, $y-1/2$, $-z$.				

Fig. 2